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A new characteristic approach that guarantees conservative property is proposed and is
applied to the shallow water equations. CIP–CSL (Constrained Interpolation Profile/Conser-
vative Semi-Lagrangian) interpolation is applied to the CIP method of characteristics in
order to enhance the mass conservation of the numerical result. Although the characteristic
formulation is originally derived from non-conservative form, present scheme achieves
complete mass conservation by solving mass conservation simultaneously and reflecting
conserving mass in interpolation profile. Present method has less height error compared
to the CIP method of characteristics by several orders of magnitude. By the enhanced con-
servation property, present scheme is applicable to nonlinear problem such as shock.
Furthermore, application to two dimensions including the Coriolis term is straightforward
with directional splitting technique.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The shallow water equations are often used for benchmark problems of new schemes in numerical weather prediction
and have been extensively studied in various forms [1,2]. Conservative schemes essentially warrant the conservation of
height while the time step interval Dt is strictly limited to be short by large acceleration of the gravity term. The strict time
step interval constraint has been a problem in explicit Eulerian representations, due to the fast gravity waves [3].

The characteristic approach [4] is, however, at liberty to choose a large time step interval Dt because the speed of the
gravity wave is included in the advection speed of Riemann invariants, and the Courant–Friedrichs–Lewy (CFL) constraint
from gravity term can be removed with such semi-Lagrangian approaches. The application of the CIP method [5,6] to the
semi-Lagrangian characteristic approach proved its high efficiency and accuracy [7], however, its lack of conservation re-
mains unresolved because the characteristics formulation is derived from a non-conservative form.

In simulations of the whole Earth, for example, the volume of seawater is about 1.37 � 109 [km3]. Therefore, although the
CIP method shows good conservation of mass, the actual error of seawater volume becomes tremendous. Besides, from the
viewpoint of numerical schemes, exact mass conservation is essential in order to accurately calculate shock problems or
long-term simulations [8].

While semi-Lagrangian approaches have made computations greatly efficient in a variety of fields, the lack of conserva-
tion has always been pointed out. Some excellent conserving semi-Lagrangian schemes have been proposed, such as
. All rights reserved.
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semi-Lagrangian Inherently Conserving and Efficient (SLICE) [9,10], Cell-Integrated Semi-Lagrangian (CISL) [11], semi-Impli-
cit Locally Mass Conserving semi-Lagrangian (SI-LMCSL) [12] schemes, Finite Volume Method (FVM)-based scheme [13,14]
or CIP–FVM scheme [15], and they have been also used for numerical weather prediction models through the shallow water
equations. In the past several years, one of authors developed the Conservative Semi-Lagrangian (CSL) scheme based on the
CIP method and it has been applied to various kinds of problems [16–20].

In this paper, we propose a new conservative scheme by adopting the CIP–CSL scheme to the method of characteristics
(MOC) and examine its characteristics with the shallow water equations in multi-dimensions.

This paper is organized of the following sections. Section 2 explains interpolation methods to transport Riemann invari-
ants. In Section 3, the CIP and the CIP–CSL interpolations are applied to the transport of Riemann invariants in one-dimen-
sional shallow water equations and the present method is tested in linear and shock problems. Applications of the present
method to large CFL numbers are also demonstrated and discussed. In Section 4, the present method is extended to two
dimensions and tested with various problems. Conclusion and discussion are given in Section 5.

2. Interpolation methods

The solution of an advection equation
@f
@t
þ u

@f
@x
¼ 0; ð1Þ
is a simple advection of profile f with the characteristic velocity u as follows:
f ðx; t þ DtÞ ¼ f ðx� uDt; tÞ; ð2Þ
when u is constant. Even if u is a function of time t and space x, we can locally use the solution equation (2) as follows:
f ðxi; t þ DtÞ ¼ f ðxi � uiDt; tÞ; ð3Þ
where xi and ui are the grid point and the velocity at xi, respectively. Thus it can be accurately solved by interpolating the
upstream departure point xi � uDt with an accurate approximation. By diagonalizing or transforming the vector–matrix form
of the shallow water equations [21], they become a set of simple advection equations for Riemann invariants. Here we intro-
duce three interpolation methods to transport the Riemann invariants.

2.1. CIP interpolation

We shall briefly describe the CIP method, which is a robust and less diffusive solver for hyperbolic equation with accuracy
of third order both in time and space. Let us consider the solution of the hyperbolic equation first. The equation for the first
spatial derivative is derived from Eq. (1)
@ð@xf Þ
@t

þ u
@ð@xf Þ
@x

¼ �@xf
@u
@x
; ð4Þ
where we denote @x � @=@x. The right hand side of Eq. (4) vanishes when u is constant, and the solution of Eq. (4) at the grid
point xi is given by
@xf ðxi; t þ DtÞ ¼ @xf ðxi � uDt; tÞ: ð5Þ
Eq. (5) means that the spatial derivative of f also travels with the velocity of u, along with the profile. Since the upstream
departure point xi � uDt is not usually at a grid point, we need to interpolate the value at the upstream departure point with
values on grid points. The CIP method constructs a cubic polynomial interpolation with values and spatial derivatives at the
both adjacent side grid points (Fig. 1). Thus, the value and spatial derivative at the ðnþ 1Þ step are obtained by shifting the
profile by uiDt as follows:
f nþ1
i ¼ Fiðxi � uiDtÞ ¼ ain

3 þ bin
2 þ @xfinþ fi; ð6Þ

@xf nþ1
i ¼ @xFiðxi � uiDtÞ ¼ 3ain

2 þ 2binþ @xfi; ð7Þ
Fig. 1. Schematic of CIP interpolation.
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ai ¼
ð@xfi þ @xfiupÞ

D2 þ 2ðfi � fiupÞ
D3 ; ð8Þ

bi ¼
3ðfiup � fiÞ

D2 � ð2@xfi þ @xfiupÞ
D

; ð9Þ
where n ¼ �uiDt; iup ¼ i� sgnðuiÞ; sgnðuiÞ ¼ 1 ðui P 0Þ; �1 ðui < 0Þ; D ¼ �Dx � sgnðuiÞ; @xf � @f=@x. In the case u changes,
the third term in Eq. (4) must be solved with finite difference additionally [5]. It has already been proved in previous liter-
atures [22,16,7] that the CIP method has extremely low dispersion error and numerical damping.

2.2. CIP–CSL4 interpolation

The CIP–CSL4 [17–19] scheme is almost the same as the CIP method but requires that an integral of an interpolation pro-
file is equivalent to a cell mass between grid points (Fig. 2). With the value f and the spatial derivative @xf defined on a grid
point like collocated grid and the cell mass q �

R
Fðx; tÞdx defined at the center of the cell like staggered grid, we can con-

struct a quartic polynomial interpolation profile between two grid points:
f nþ1
i ¼ Fiðxi � uDtÞ ¼ ain

4 þ bin
3 þ cin

2 þ @xfinþ fi; ð10Þ
@xf nþ1

i ¼ @xFiðxi � uDtÞ ¼ 4ain
3 þ 3bin

2 þ 2cinþ @xfi; ð11Þ

ai ¼
�5 6ðfiup þ fiÞD� ð@xfiup � @xfiÞD2 þ 12sgn un

i

� �
qicell

� �
2D5 ; ð12Þ

bi ¼
4 ð7f iup þ 8f iÞD� ð@xfiup � ð3=2Þ@xfiÞD2 þ 15sgn un

i

� �
qicell

� �
D4 ; ð13Þ

ci ¼
�3 4ð2f iup þ 3f iÞD� ð@xfiup � 3@xfiÞD2 þ 20sgn un

i

� �
qicell

� �
2D3 : ð14Þ
Here, icell ¼ i� sgnðuiÞ=2 and qiþ1=2 ¼
R xiþ1

xi
FiðxÞdx.

2.3. CIP–CSL2 interpolation

The CIP–CSL2 [17,20] scheme as well as the CSL4 scheme also require that the integral of interpolation profile is equiv-
alent to the cell mass, however, without spatial derivatives. The interpolation profile is approximated as follows:
f nþ1
i ¼ Fðxi � uiDtÞ ¼ 3ain

2 þ 2binþ fi; ð15Þ

ai ¼
fi þ fiup

D2 þ 2sgnðuiÞqicell

D3 ; ð16Þ

bi ¼ �
2f i þ fiup

D
� 3sgnðuiÞqicell

D2 : ð17Þ
The time development of the cell mass q is also needed in CIP–CSL schemes, which can be calculated by considering the flux
Dqi passing through xi during ½t; t þ Dt� as follows (see Figs. 4 and 5 in Section 3):
qnþ1
iþ1=2 ¼ qn

iþ1=2 þ Dqi � Dqiþ1: ð18Þ
The way of estimation of Dqi in CSL–MOC schemes is given in Section 3.

3. One-dimensional shallow water equations

3.1. Characteristic formulation and discretization

Let h be the water height above a bottom, u the velocity and g the gravitational acceleration, then the one-dimensional
shallow water equations in a primitive form are written as
Fig. 2. Schematic of CSL4 interpolation.
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@h
@t
þ @ðuhÞ

@x
¼ 0; ð19Þ

@u
@t
þ u

@u
@x
þ g

@h
@x
¼ 0: ð20Þ
The effect of a bottom topography can be also included as the source term in the shallow water equations. The extension will
be given in the Appendix.

If let L0 and h0 be the characteristic length and height of the system, U0 be the characteristic velocity and t0 ¼ L0=U0 be
time, hereafter we can use Eqs. (19) and (20) as nondimensional basic equations. The corresponding Froude number
Fr � U0=

ffiffiffiffiffiffiffiffi
gh0

p� �
can be defined as g � 1=Fr2 in Eq. (20).

In a vector–matrix form, Eqs. (19) and (20) are rewritten as
@

@t
h

u

� �
þ

u h

g u

� �
@

@x
h

u

� �
� @W

@t
þ AðWÞ @W

@x
¼ 0: ð21Þ
With a matrix L which diagonalizes the matrix A as L�1AL, Eq. (21) can be written as
L�1 @W
@t
þ ðL�1ALÞL�1 @W

@x
¼ 0; ð22Þ
where L�1 is the inverse matrix of L, and C� are the eigenvalues of A, respectively, and they can be simply given as follows:
C� ¼ u� C; ð23Þ

L ¼
1 1ffiffiffiffiffiffi
gh

p
�

ffiffiffiffiffiffi
gh

p� �
; L�1 ¼ 1

2
1

ffiffiffiffiffiffiffiffi
h=g

p
1 �

ffiffiffiffiffiffiffiffi
h=g

p
 !

; ð24Þ
where C ¼
ffiffiffiffiffiffi
gh

p
. If A(W) is a constant matrix (the linear shallow water equations), Eq. (22) can be exactly diagonalized. How-

ever, even if A(W) is not the constant matrix (the nonlinear shallow water equations as Eq. (21)), Eq. (22) can be rewritten in
the following simpler form [4],
@R�

@t
þ C�

@R�

@x
¼ 0; ð25Þ
where R� ¼ C� u=2 are called the Riemann invariants. Eq. (25) means that the Riemann invariants propagate with the speed
of u� C (see Fig. 3). Eq. (25) (or Eq. (22)) is in a form favorable to the CIP method because they are (despite nonlinear equa-
tions) pure advection equations. Since the CIP method needs not only values but also spatial derivatives, we also need to
solve spatial derivatives of the Riemann invariants. Taking the spatial derivative of Eq. (25) leads to ()
@

@t
ð@xR�Þ þ C�

@

@x
ð@xR�Þ ¼ �ð@xR�Þ @C�

@x
: ð26Þ
In the case nonlinearity is large, the right hand side of Eq. (26) needs to be solved by a finite difference. Solving Eqs. (25) and
(26) with the CIP method, we obtain the solution with the third order accuracy both in time and space. Taking the average
and the difference of the Riemann invariants obtained with the CIP interpolation, we obtain C and u (and their derivatives as
well) at the new time step tnþ1:
Cnþ1 ¼ 1
2

Cþ þ C� þ 1
2
ðuþ � u�Þ

	 

; ð27Þ

@xC
nþ1 ¼ 1

2
@xC

þ þ @xC
� þ 1

2
ð@xuþ � @xu�Þ

	 

; ð28Þ
Fig. 3. Schematic of characteristic propagation.



Fig. 4. Schematic of conventional flux.

K. Toda et al. / Journal of Computational Physics 228 (2009) 4917–4944 4921
unþ1 ¼ 1
2
½uþ þ u� þ 2ðCþ � C�Þ�; ð29Þ

@xunþ1 ¼ 1
2
½@xuþ þ @xu� þ 2ð@xC

þ � @xC
�Þ�: ð30Þ
This CIP method of characteristics (hereafter, we call it the CIP–MOC) was first proposed by Ogata et al. and their result
shows high efficiency and accuracy [7]. Although the method does not guarantee the complete mass (height h) conservation,
their result shows fairly sufficient conservation of both height and vorticity. However, the conservation becomes critical in
applications to nonlinear problems or long-term simulations. In order to overcome these problems, we interpolate h� and
@xh� at the upstream departure point with the CSL4 scheme from the values of hn and @xhn (instead of Cn and @xC

n) which
are defined at grid points and obtained by the characteristic method, and are transformed into C� and @xC

�:
C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gh�CSL4

q
; ð31Þ

@xC
� ¼ @xh�CSL4

2

ffiffiffiffiffiffiffiffiffiffi
g

h�CSL4

s
; ð32Þ
where the subscript CSL4 in variables means that they are interpolated with the CSL4 scheme. Then substituting Eqs. (31)
and (32) into Eqs. (27)–(30), the height and its spatial derivative at new time step can be obtained simply by inverse
transformations:
hnþ1
i ¼ Cnþ1

i

� �2
=g; ð33Þ

@xhnþ1
i ¼ 2@xC

nþ1
i

ffiffiffiffiffiffiffiffiffi
hnþ1

i

g

s
: ð34Þ
Since we need the cell mass q for the next time step to construct CSL interpolation, we also need to transport q in a flux form
(for complete conservation) for the next time step.

In the original CIP–CSL scheme, the flux Dq was calculated as the mass between the point xi and the upstream departure
point xd ¼ xi �

R tþDt
t ui dt as follows [17,18,20]:
Dqi ¼
Z xi

xd

hðxÞdx: ð35Þ
However, the direct application of this method to the shallow water equations causes oscillation, because the velocity and
height field develop together and it is difficult to find the upstream departure point. In an alternative way, the flux Dq can
also be estimated by interpolating the height and the velocity in time at xi:
Dqi ¼
Z tþDt

t
uðt; xiÞhðt; xiÞdt: ð36Þ
While conventional mass advection equation (35) means that the volume between xi and the upstream departure point xd

shift to the next cell, the present method integrates the mass passing xi through during Dt. The conventional time-averaged
flux for Eq. (36) suggested in some literatures [8,23] uses the flux at time n and the predicted flux at time nþ 1 by the ori-
ginal conservation equation. The easiest choice to interpolate the momentum is linear interpolation because we already have
hnþ1 and unþ1. Using hnþ1 and unþ1, the momentum at xi can be linearly interpolated as
uðt; xiÞhðt; xiÞ ¼ un
i hn

i þ
unþ1

i hnþ1
i � un

i hn
i

� �
Dt

ðt � tnÞ: ð37Þ
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However, the trapezoidal integration of this simple linear interpolation during whole Dt has low accuracy and easily makes
phase error even with small CFL numbers. In order to enhance the time accuracy of volume flux, we propose to calculate
hnþ1=2 and unþ1=2 also with MOC, use the momentum at tnþ1=2 and the Simpson’s rule integration as follows (Fig. 5):
Dqi ¼
Dt
6

un
i hn

i þ 4unþ1=2
i hnþ1=2

i þ unþ1
i hnþ1

i

� �
: ð38Þ
With this newly obtained qnþ1
iþ1=2 by Eq. (18), the CSL4 interpolation can be constructed at the next time step, and the whole

procedure in one dimension at a time step is completed here.
The reason why we propose the new method for flux estimation here is because the conventional flux estimation equa-

tion (35) is not valid for the shallow water equations.
When the conventional method equation (35) is taken, the peak height of a wave keeps rising and soon oscillation occurs

in a next example problem. This is because the cell mass is not coupled with height on grid points. Let us think about a still
water column (Fig. 6). If the time step interval is largely taken, after the first step, the height on grid points will form two
smaller water column propagating to each side by the method of characteristics, however, the cell mass will still be at
the initial place because initially the velocity is all zero (no flux is produced). On the other hand, the present method pro-
duces flux even in such a case because this method considers the time evolution of velocity on grid points during the time
step interval. The present method enables applications of the CIP–CSL scheme to the method of characteristics for the shal-
low water equations (hereafter, we call it the CSL–MOC).

3.2. Result in almost linear case

We tested the present method in two cases, one is almost a linear case and the other is a nonlinear case such as a shock
problem. First, in almost the linear case, the initial profile is given as below:
hðx; t ¼ 0Þ ¼ 1:0þ 0:01 � exp � x� Xmax=2
5:0

� �2
( )

: ð39Þ
Fig. 5. Schematic of present flux.

X

h

Fig. 6. Initial condition and solution behavior.
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Velocity ui is zero on all points. In this case, as time passes, the initial still water column is split in two and the waves prop-
agate in each direction as shown in Fig. 6. The number of meshes NX is 2000 and the mesh size is Dx ¼ 1:0. Time is developed
until t ¼ 800. Since the nonlinearity is very small, the right hand side of Eq. (26) is not solved here. The gravitational accel-
eration is set to g ¼ 1 ðFr ¼ 1Þ in all one-dimensional calculations.

Fig. 7 shows the wave profiles calculated with the present method (CSL–MOC), the CIP–MOC, and the MOC using the cu-
bic-Lagrange method (hereafter, we call it the CUL–MOC) at t ¼ 800 with CFL = 0.4. We define CFL � absðC�maxDtÞ=Dx
throughout this paper. It has been already shown that the CIP–MOC has several advantages comparing with the CUL–
MOC of which accuracy strongly depends on the grid size, and here Fig. 7 shows that the present method takes over advan-
tages of the CIP–MOC and besides keeps the peak height of the wave better than the CIP–MOC. It may not seem Fig. 7 shows
that the CSL–MOC has such a big advantage comparing with the CIP–MOC, however, the difference becomes obvious in long
time integration. The conservation of the present scheme is examined by integrating until t ¼ 10;000 and the results are
shown in Fig. 8. We estimated the error with the following equation:
Error ¼
X

fistep �
X

finitial

��� ���.X finitial: ð40Þ
In the case of height error, f is substituted with h. Fig. 8 shows that the height conservation is better by the order of 105 with
the present method than only the CIP method. Note that the cell mass in the whole computational region is completely con-
served, because it is transported in the flux form. Since the height error in Fig. 8 is constrained by this completely conserving
volume, it is guaranteed not to increase unilaterally.

Fig. 9 shows the difference by CFL numbers. It can be seen that shape and propagation speed of wave are almost the same
as each other for different CFL numbers, that is, numerical results do not change very much even if time step interval is lar-
gely taken ðCFL > 0:7—0:8Þ. This shows that phase error and damping rate of the CSL–MOC for various CFL numbers are very
X

h

Fig. 7. Difference by scheme.

Time

Er
ro

r (
H

ei
gh

t)

Fig. 8. Height error.
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Fig. 9. Difference by CFL.
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low. This is also the big advantage for calculations of the gravity waves without dispersion of phase speeds and damping of
wave amplitudes.

3.3. Nonlinear case

In particular cases such as shock wave problems, exact solutions are given for the shallow water equations [24]. In these
cases, the right hand side of Eq. (26) is solved with finite difference because of the substantial nonlinearity.

3.3.1. Artificial viscosity
Although the present method guarantees mass conservation, since method of characteristics itself is in non-conservative

form, shock front gets delayed from the one of exact solutions in dam break problems. Therefore, we introduce an artificial
viscosity to enhance the solution in such problems. In solving compressible Euler equations, an artificial viscosity is added in
order to enhance the energy conservation and meet with exact solutions [25]. We employed a form similar to the one used in
solving compressible flow:
q� ¼
Cv
g ðDu�Þ2 if Du� < 0;

0 otherwise;

(
ð41Þ
where
Du� ¼ sgnðC�Þðui � ui�sgnðC�ÞÞ; ð42Þ

C�v is ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh� þ q�Þ

q
; ð43Þ
and the viscosity coefficient Cv is set to unity. Since the height is already guaranteed to conserve, we replace C� only in Eq.
(29) with Eq. (43). Even though the present method gives much closer solution to the exact solution in shock problem with-
out this artificial viscosity compared to the CIP–MOC, it does help to suppress some small oscillation at the shock front. We
used 10,000 grid points with maximum CFL ’ 0:2.

3.3.2. Result
The comparison of the CIP method and the present method with the exact solution at t ¼ 400 is shown in Fig. 10 and it

shows clearly that the present method has an advantage in such a discontinuous case. Fig. 11 shows the long calculation with
three times wider domain (30,000 grid points) than Fig. 10. Grid points are depicted every 1000 points for clear comparison.
Slight delay of shock front by the CSL–MOC appears at t ¼ 1200 (about 2.7% slower than a theoretical value) due to the
intrinsic property of characteristics. However, this difference is quite small for practical applications as discussed in [24],
and it is very important to capture all features accurately without any numerical instabilities.

However, since such a nonlinear profile is an unlikely circumstance in meteorology, we did not use this artificial viscosity
in further examinations.

3.4. Numerical tests for large CFL numbers in one dimension

Next, the CSL–MOC scheme is applied to large CFL numbers. Gravity wave play a minor rule in synoptic-scale calculations,
on the other hand, effects of gravity waves cannot be neglected in mesoscale calculations. Even in both cases, fast gravity
waves make time step interval Dt strictly bounded in explicit schemes. Therefore, stable and accurate methods which can
take large Dt are required for long time calculations [4].



X

h

Fig. 10. Comparison of shock between CIP–MOC and CSL–MOC at t ¼ 400.

X

h

Fig. 11. Shock at t ¼ 400, 800, 1200 solved with CSL–MOC.
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Some applications of the CIP–MOC to large CFL numbers have already shown that it is unconditionally stable, and its
amplitudes and phase speeds of waves are highly accurate even for large CFL numbers [7]. In this section, we shall extend
the CSL–MOC to large CFL numbers calculations (Fig. 12).

In semi-Lagrange approaches, since the upstream departure point xp
i can be easily found by tracing the trajectory across

several grid points in Dt even for large CFL numbers as follows:
xp
i ¼ xi �

Z tþDt

t
ui dt: ð44Þ
The value and spatial derivative used in the CIP or the CIP–CSL4 can be also interpolated at the cell which includes the up-
stream departure point xp

i [20,16]. The time evolution of q can be also calculated by the mass flux Dq in Dt [20]. The standard
1/3 Simpson’s rule is adopted to calculate Dq as Eq. (18) for large CFL numbers, and Eq. (38) is changed as
Dqi ¼
Dt

3Llevel
ðuihiÞn þ 2

XLlevel=2�1

l¼1

ðuihiÞ
nþ 2l

Llevel þ 4
XLlevel=2

l¼1

ðuihiÞ
nþ 2l�1

Llevel þ ðuihiÞnþ1

" #
; ð45Þ
where Llevel is the number of substeps in Dt. For example, Llevel ¼ 2 in Eq. (45) corresponds to the case of CFL 6 1 Eq. (38), and
Llevel should be an even number for the standard 1/3 Simpson’s rule when CFL is larger than unity. In the present scheme, we
take Llevel ¼ 2� ð1þ intðCFLÞÞ.

First, the same initial condition as Eq. (39) is taken as the test problem. The number of meshes is 2000 and the grid inter-
val is Dx ¼ 1:0. Eqs. (19) and (20) are integrated up to t ¼ 800:0 with several CFL numbers.

Fig. 13 shows the result of wave propagations for CFL = 0.4, 4.0, 10.0, 40.0. Numerical solutions are stable, and wave
amplitudes and propagation speed are approximately preserved even for large CFL numbers. However, profiles of large



Fig. 12. Schematic of characteristic propagation for large CFL.

X

h

Fig. 13. The height at t ¼ 800:0 under the initial condition of Eq. (39) for CFL = 0.4, 4.0, 10.0, 40.0.
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CFL numbers deviate from the solution of CFL ¼ 0:4. This is because the wave propagation speed rapidly changes in time and
space.

In order to obtain correct solutions, the time step interval Dt must be taken in such a way that DCDt=Dx � 1 (called Lips-
chitz condition [4]) can be satisfied, where DC is a change of (characteristic) speeds in Dt. This condition is the common
restriction in any large CFL calculations using any numerical schemes.

The breakdown of Lipschitz condition by large DC will give incorrect solutions. Nonetheless, in semi-Lagrangian ap-
proaches, it has already been proved that correct estimations of characteristic speeds in characteristics can give correct
numerical solutions even for large CFL numbers [26,7] when DC satisfies Lipschitz condition, in other words, longer time step
interval can be taken when flows are smooth. The same can be said of multi-dimensional calculations, which will be dem-
onstrated in Section 4.

In order to confirm the speculation, we take the other two initial conditions:
hðx; t ¼ 0Þ ¼ 1:0þ 0:001 � exp � x� Xmax=2
5:0

� �2
( )

; ð46Þ

hðx; t ¼ 0Þ ¼ 1:0þ 0:01 � exp � x� Xmax=2
50:0

� �2
( )

: ð47Þ
The amplitude of perturbation of Eq. (46) is 10 times smaller than Eq. (39), and the perturbation of Eq. (47) is 10 times wider
than Eq. (39). Therefore, these two conditions are closer to linear problems than Eq. (39).

The numerical solutions from CFL = 0.2 to 40.0 for Eqs. (46) and (47) are shown in Figs. 14 and 15, respectively.
Both results show good behavior without dispersion of the phase speed and damping of the amplitude in the wide range

of CFL numbers. Especially, CFL numbers of both 0.2 and 40.0 are exactly the same as each other in the wide perturbation
equation (47).

Therefore, it is concluded that the present scheme can give stable and accurate solutions for large CFL numbers when
changes of characteristic speeds are small for one-time step.

The CSL–MOC as well as the CIP–MOC are stable, and numerical solutions are also similar to each other in not only linear
but also nonlinear problems even for very large CFL numbers such as 40.0. For example, the overall phase speed and ampli-



h

X

Fig. 14. The height at t ¼ 800 under the initial condition of Eq. (46).

X

Fig. 15. The height at t ¼ 800 under the initial condition of Eq. (47).
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tude are maintained very well for very large CFL numbers as well in the CSL–MOC. However, some superiorities of the CIP–
CSL4 to the CIP for large CFL numbers are the same as small ones. In conventional implicit solutions without characteristic
methods, strong numerical diffusion will make waves smeared out and dispersion error will give incorrect phase speed. As
opposed to them, the present method based on semi-Lagrangian approach is able to solve without such disadvantages.

4. Two-dimensional shallow water equations

4.1. Arrangement of height and its integration value in two dimensions

In two dimensions, we employed the same arrangement of conservative quantities (height in present case) as the conven-
tional multi-dimensional CSL as shown in Fig. 16. We define line density in both x-direction rx �

R Dxhdx
� �

and y-direction
ry �

R Dyhdy
� �

between grid points and cell mass q �
R DyR Dxhdxdy

� �
in the middle of 4 grid points. In this arrangement, we
Fig. 16. Arrangement of height and its integration values.
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can construct CSL2 and CSL4 interpolation in both the x- and y-directions, so the same procedure as one dimension can be
directly implemented in both the x- and y-directions.

4.2. Characteristic formulation

Two-dimensional primitive shallow water equations without effects of bottom topography are written in vector–matrix
form as
@

@t

h

u

v

0
B@

1
CAþ

u h 0
g u 0
0 0 u

0
B@

1
CA @

@x

h

u

v

0
B@

1
CAþ

v 0 h

0 v 0
g 0 v

0
B@

1
CA @

@y

h

u

v

0
B@

1
CAþ

0
�f v
fu

0
B@

1
CA � @W

@t
þ AðWÞ @W

@x
þ BðWÞ @W

@y
þ F ¼ 0; ð48Þ
where f represents the constant Coriolis parameter.
If let f0 be the characteristic Coriolis parameter, we can use Eq. (48) as nondimensional equation with the definition in

Section 3.1, and the corresponding Rossby number Ro � U0=f0L0 is also defined as f � 1=Ro in Eq. (48).
Here, using a directional splitting technique, Eq. (48) is split into two sequential phases. The Coriolis force term is also

divided in half and added to each directional phase:
@W
@t
þ A

@W
@x
þ 1

2
F ¼ 0 W!W	; ð49Þ

@W
@t
þ B

@W
@y
þ 1

2
F ¼ 0 W	 !Wnþ1: ð50Þ
Since matrices A and B are not commutative, we solve these directional phases in rotation as below in order to maintain
second order accuracy in time:
Wnþ2 ¼ LxLyLyLxWn; ð51Þ
where Lx and Ly represent the operation of Eqs. (49) and (50), respectively [27,28].
Since there is no difference between the x-directional operation and the y-directional operation, we will mainly demon-

strate the operation procedure in the x-direction. In the exact same way as one dimension, we can find the eigenvalues of
matrix A with L and L�1:
L�1 @W
@t
þ ðL�1ALÞL�1 @W

@x
þ L�1 1

2
F ¼ L�1 @W

@t
þ

Cþx 0 0
0 C�x 0
0 0 u

0
B@

1
CAL�1 @W

@x
þ L�1 1

2
F ¼ 0; ð52Þ
where
C�x ¼ u� C; ð53Þ

L ¼
1 1 0ffiffiffiffiffiffi
gh

p
�

ffiffiffiffiffiffi
gh

p
0

0 0 1

0
B@

1
CA; L�1 ¼

1
ffiffiffiffiffiffiffiffi
h=g

p
0

1 �
ffiffiffiffiffiffiffiffi
h=g

p
0

0 0 1

0
B@

1
CA: ð54Þ
Decomposing Eq. (52) leads to the following three equations,
@R�x
@t
þ C�x

@R�x
@x

 1

4
f v ¼ 0; ð55Þ

@v
@t
þ u

@v
@x
þ 1

2
fu ¼ 0; ð56Þ
where R�x ¼ C� u=2 are the Riemann invariants. What these three equations mean is that two Riemann invariants R�x and v
propagate with the characteristic speeds of C�x and u (Fig. 17), respectively, and the Coriolis force (the third term) is added to
each Riemann invariant along each characteristic line. Based on this consideration, we discretized the Riemann invariants
and v as follows (see Fig. 18):
R�x ¼ C� � 1
2

u� 
 1
4

fDt
ðv� þ v	Þ

2
; ð57Þ

v	 ¼ v0 þ 1
2

fDt
ðu0 þ u	Þ

2
: ð58Þ
The Coriolis force term is discretized with the Crank–Nicholson method using the velocity at characteristics foot and at the
new time step. Eqs. (57) and (58) are a kind of semi-implicit formulations. However, unlike typical semi-implicit schemes,
Eqs. (57) and (58) can be solved explicitly without solving any matrices, and careful choice of a reference geopotential to
stabilize numerical schemes is not needed.



Fig. 17. Schematic of characteristic propagation.

Fig. 18. Schematic of average characteristics propagation.
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Using Eq. (58) to Eq. (57), we can explicitly solve C	 and u	, and simply substituting u	 into Eq. (58) for v	, we obtain all
variables on grid points at the new time step t	.

Formulations for spatial derivatives in both the x- and y-directions are exactly the same as Eqs. (57) and (58), and linear
interpolation is used in interpolating spatial derivatives in the y-direction, which we call the M-type CIP method [29]. The
same mass advection procedure as in one dimension is applied here to rx (which corresponds to Dq in Eq. (38)), and Drx is
calculated with newly obtained h	 and u	.

In two dimensions, ry and q also need to be updated. Here, we propose to take average characteristics between yj and yjþ1.
We introduce average values between yj and yjþ1 as
�hi;j ¼ ryi;j
=Dy; �rxi;j

¼ qi;j=Dy; ð59Þ
�ui;j ¼ ðui;j þ ui;jþ1Þ=2; @x�ui;j ¼ ð@xui;j þ @xui;jþ1Þ=2; ð60Þ
�v i;j ¼ ðv i;j þ v i;jþ1Þ=2 and @x �v i;j ¼ ð@xv i;j þ @xv i;jþ1Þ=2: ð61Þ
With these averaged values, propagations of average characteristics in the exactly same manner as in one dimension can be
implemented. We can construct CSL2 interpolation with �h and �rx, and CIP interpolation with �uð�vÞ and @x�uð@x �vÞ. By trans-
forming the �h�CSL2 into C� with Eq. (31) and taking the average of Riemann invariants, we obtain C	. Transforming C	 back
to the height and multiplying Dy, the y-direction line density r	y at new time step is obtained. This procedure corresponds
to tracking the average characteristics between yj and yjþ1.

The remaining q is updated with a similar method to rx. The x-direction flux Dqx between yj and yjþ1 in the phase of Eq.
(49) can be estimated as follows:
Dqxi;j
¼ 1

6
�urn

yi;j
þ 4�urnþ	�n

2
yi;j

þ �ur	yi;j

� �
Dt; ð62Þ
where �urn
yi;j
¼ �un

i;jrn
yi;j

. All procedure in Eq. (49) is completed here. All procedure in x-direction can be directly adopted by sim-
ply exchanging the interpolation direction, velocity in the other (y-) direction. Detailed discussions of multi-dimensional
CIP–CSL schemes in views of numerical tests can be also referred to previous literatures [19,20].

4.3. Numerical results

First, we tested the present method with almost linear condition by giving a small perturbation and the initial height pro-
file is given by
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hðx; y; t ¼ 0Þ ¼ 1:0þ 0:01 � exp � x� Xmax=2
5:0

� �2

� y� Ymax=2
5:0

� �2
( )

: ð63Þ
The perturbation is so small that the characteristic speed is almost 1.0 everywhere in this problem. The grid interval is set to
Dx ¼ Dy ¼ 1:0 and the number of grid points is 200 in both x- and y-directions. The gravitational acceleration is set to
g ¼ 1 ðFr ¼ 1Þ and the Coriolis parameter f ¼ 0. Velocity is set zero on all points. We examined the difference by CFL up
to 0.4 since phase error becomes significant with CFL > 0:7—0:8 as shown in one dimension case.

Fig. 19 shows that the position of the wave exactly matches with the ones calculated by the CIP–MOC even with
CFL ¼ 0:4, which means that both point values and cell mass are transported in correct velocity in two dimensions. The
cross-section profile at t ¼ 60:0 is shown in Fig. 20 and the height contour is shown in Fig. 21. They show that the effect
of directional splitting does not show up yet with CFL ¼ 0:4. Furthermore the conservation is complete while the conserva-
tion of the CIP–MOC keeps deteriorating as time proceeds (Fig. 22).

The two-dimensional CSL–MOC scheme can be also extended to large CFL numbers using the formulation of one dimen-
sion. As for x-direction for instance, the characteristics equations (57) and (58) with the upstream departure point equation
(44) can be used for two sets ðh;u; vÞ and ð�h; �u; �vÞ, and the flux equation (45) for ðDrx;DqxÞ. The similar procedure can be
implemented in the y-direction.

Shown in Figs. 23 and 24 are height contours and cross-sections for each CFL number at t ¼ 60:0. The initial condition, the
grid interval and the number of grid points are the same as calculation of Eq. (63) with the small CFL number (=0.4).

Although the contour of CFL = 1.5 seems to be almost the same as CFL = 0.4, the cross-sections of the x- and y-directions
are a little bit different from the diagonal profile. As shown in the previous literature of the CIP–MOC method [7], the CSL–
MOC scheme also produces incorrect results as CFL numbers become larger and Lipschitz condition is broken, as discussed in
Section 3.4.
Distance from center

h

Fig. 19. Cross-section comparison with CIP–MOC.

Distance from center

h

Fig. 20. Cross-section of CSL–MOC at t = 60.0.



Fig. 21. Height contour at t ¼ 60:0 (CFL = 0.4).
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Fig. 22. Height conservation comparison.
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For comparison, an example closer to linear problem than Eq. (63) is examined by setting the amplitude of initial height h
to 0.001 and the width of initial distribution to 50.0:
hðx; y; t ¼ 0Þ ¼ 1:0þ 0:001 � exp � x� Xmax=2
50:0

� �2

� y� Ymax=2
50:0

� �2
( )

: ð64Þ
Grid intervals Dx and Dy are also set to 1.0, but the number of grid points is 400 in both x- and y-directions.
Figs. 25 and 26 show height contours and cross-sections, and Fig. 27 displays cross-sections near the top of wave for each

CFL number at t ¼ 96:0.
It can be seen that the profile of CFL = 8.0 is almost a circle and effects of fractional steps hardly appear. However, the

profile of CFL = 12.0 slightly deviates from a circle and the inside of the profile of CFL = 16.0 becomes a square shape. The
difference can be clearly seen in Fig. 27.

Since the initial height of Eq. (64) is 10 times smaller and the width is 10 times larger than Eq. (63), the change of the
speed of gravity waves � D

ffiffiffiffiffiffi
gh

p� �� �
is about 10 times smaller. Therefore, the adequate CFL number of Eq. (64) under Lips-

chitz condition is roughly estimated to be �8.0.
The detailed discussion of merits and demerits of fractional techniques with the CIP/CIP–CSL schemes for large CFL num-

bers has already been given [20,7]. Notice that what is important in semi-Lagrange approaches is whether stable and robust
solutions can be obtained and typical features of numerical solutions are not lost even for large CFL numbers, and correct
solutions can be obtained under Lipschitz condition. For example, complete nonlinear problems such as shock wave prob-
lems should be solved in CFL < 1 and semi-Lagrange approaches for large CFL numbers cannot be applied. However, they
can be very effective approaches for calculations of not only fast waves such as gravity waves but also fast flows with small



Fig. 23. The comparison of height contours among several CFL numbers at t ¼ 60:0. The initial height is Eq. (63). (a) CFL = 0.4; (b) CFL = 1.5; (c) CFL = 2.0; (d)
CFL = 2.5.
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changes such as jet-stream. Some results of large CFL numbers shown have indicated that the present CSL–MOC scheme has
above-mentioned important merits and possibilities for such variety of fields.

4.4. The effect of Coriolis force

Next, we tested the same example as the previous section but with the presence of the Coriolis force. The Coriolis param-
eter is set to f ¼ 1:0 ðRo ¼ 1Þ. In this case, the pressure (height) gradient gradually balances with the Coriolis force and gen-
erate geostrophic wind. The initial profile is given by
hðx; y; t ¼ 0Þ ¼ 1:0þ 0:01 � exp � x� Xmax=2
10:0

� �2

� y� Ymax=2
10:0

� �2
( )

: ð65Þ
All the other condition is the same as the previous example. In two dimensions with the Coriolis force, there are two quan-
tities which are also conserved other than the height [1]. They are defined as
g � f þ f and P � g2

2h
; ð66Þ
and termed the absolute vorticity and the (absolute) potential enstrophy respectively, where f ¼ k � r � u is the vorticity of
z-component and k is the unit vector in the z-direction. Here, we examined not only the conservation of height but also the
conservation of g and P. The same as height, the errors of g and P are estimated with Eq. (40) by substituting g or P into f .

Fig. 28 shows the time development of height contour, velocity field and absolute vorticity contour until t ¼ 1000. The
water column is influenced by periodic boundary condition because the wave which propagates away comes back from
the other side, especially after t ¼ 500. Even with this disturbance, the shape of water column is kept with good symmetry
at t ¼ 1000.



Fig. 24. The comparison of height cross-sections for each CFL number at t ¼ 60:0 in Eq. (63). (a) CFL = 0.4; (b) CFL = 1.5; (c) CFL = 2.0; (d) CFL = 2.5.
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The height is conserved with almost the same order as in one dimension as shown in Fig. 29(a). Note that the total mass
(integral of height, summation of q) in the computational region is completely conserved as in one dimension. In two dimen-
sions with the Coriolis force, the absolute vorticity and the potential enstrophy are also conserved in addition to the height
very well compared with the CIP–MOC, and all errors of the CSL–MOC do not increase as time goes on (Fig. 29(b) and (c)).

Last of all, we applied the present scheme to an unstable zonal jet problem [30,7]. In this example, zonal potential vor-
ticity is initially set with Eq. (67) in a perturbed coordinate defined by Eq. (68):
qðx; y; t ¼ 0Þ ¼
4pð1:0þ sgnð~yÞð0:5� jj~yj � 0:5jÞÞ if j~yj < 1:0;
4p otherwise;

�
ð67Þ

~y ¼ yþ Cm sinðmxÞ þ Cn sinðnxÞ: ð68Þ
Perturbation parameters are set to Cm ¼ �0:1; Cn ¼ 0:1; m ¼ 2 and n ¼ 3, respectively. The computational region is set to
ð0 6 x 6 2p; 0 6 y 6 2pÞ. Substituting the geostrophic approximation and v ¼ 0 into the definition of potential vorticity
and integrating in y-direction numerically, the initial height and velocity are set. The gravitational acceleration and the Cori-
olis parameter are set to g ¼ 4p2 ðFr ¼ 1=2pÞ and f ¼ 4p ðRo ¼ 1=4pÞ, respectively. The initial condition is so unstable that
the vorticity soon split into some vortices. We compared the CSL–MOC with the CIP–MOC in various CFL numbers (�0.1, 0.2
and 0.4). The number of grid points is 100 in both x- and y-directions.

The potential vorticity contour at t ¼ 2p is shown in Fig. 30 and it shows that the flow is transported and developed cor-
rectly even in such a strongly nonlinear velocity field. In the same way as former problems, the height conservation is guar-
anteed by the completely conserving integral of height (Fig. 31). However, the conservations of absolute vorticity and
potential enstrophy seem to be a little bit worse than the CIP–MOC. They are expected to be improved by tracking the up-
stream departure point of Riemann invariants more accurately, or estimating the flux with a better function in Eq. (37).

We also varied the grid size in solving zonal jet and the potential vorticity contours at t ¼ 2p are shown in Fig. 32. It
shows that fine nonlinear details become observable with higher resolution and steep gradients in vortices are fairly vis-



Fig. 25. The comparison of height contours for each CFL number at t ¼ 96:0. The initial height is Eq. (64). (a) CFL = 0.4; (b) CFL = 8.0; (c) CFL = 12.0; (d)
CFL = 16.0.

Fig. 26. The comparison of cross-sections between small and large CFL numbers at t ¼ 96:0. (a) CFL = 0.4 and (b) CFL = 16.0.
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Fig. 27. The comparison of cross-sections near the top of wave in Fig. 26. (a) CFL = 0.4; (b) CFL = 8.0; (c) CFL = 12.0; (d) CFL = 16.0.
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ible. These pictures show not only advantages in higher resolution, but also basic characters of the profile is still kept with
less grid number, so that the present method is promising in high resolution simulations or in mesh refinement tech-
niques. The height error is depicted against the grid size in Fig. 33, we chose the height error at t ¼ 4p. The graph shows
that the present method has less height error than the CIP–MOC with several orders of magnitude. In addition, the present
method has twice steeper gradient than the CIP–MOC, meaning that it is twice efficient in conservation in higher resolu-
tion simulations.

5. Conclusion

We succeeded in constructing the conservative method of characteristics in multi-dimension by adopting CSL interpo-
lation. While point values are transported in semi-Lagrangian manner, a flux for a cell mass is estimated as an integral of
momentum at a cell boundary. Interpolating momentum in time with newly obtained point values, the cell mass can be
correctly transported. The present method shows better height conservation by several orders of magnitude than the CIP–
MOC method. Furthermore, reflecting the conserved cell mass into interpolation functions, the conservation of height on
grid points is guaranteed so that it never unilaterally increases. Not only the conservation of height but also the other con-
servative quantities show good conservations with the same order as the CIP–MOC method. The increase in height con-
servation of the present method in higher resolution is twice more efficient than the CIP–MOC method. The most
important of all is that the present method is matrix free and totally explicit, and that is still robust enough to be applied
to nonlinear problems such as shock and unstable zonal jet, and the conservation property is still kept even for large CFL
numbers.

Next, the CSL–MOC scheme should be extended to multi-dimensional variable bathmetry such as the spherical geometry
for numerical simulations on the whole globe.
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Fig. 28. The height contour (left column), the velocity field (middle column) and the potential enstrophy contour (right column) at t = 100 (upper row),
t = 200 (middle row) and t = 400 (lower row).
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Although the simplest approach to the spherical geometry is to use the spherical coordinate, singularities close to the
poles in the governing equations appear. Some sophisticated techniques have been proposed such as cubed-sphere grid
methods in order to resolve this issue [31,32].

As opposed to them, one of the authors brought forward the new adaptive grid system called Soroban-grid [26], which
has already been used for various fields such as hydrodynamics. Although it is thought that Soroban-grid is applicable to
the spherical geometry as well, the Soroban-grid formulation for the sphere like the whole earth is now under investigation
and practical applications will be next future works.

Appendix. CSL–MOC for bottom topography

When the effect of the bottom topography is included, Eq. (48) without the Coriolis force is changed as
@W
@t
þ AðWÞ @W

@x
þ BðWÞ @W

@y
¼ S; ð69Þ
where S is the source term
S ¼
0
�g @z

@x

�g @z
@y

0
B@

1
CA ð70Þ
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Fig. 29. Conservation error of (a) height, (b) absolute vorticity and (c) potential enstrophy in almost linear problem.
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and zðx; yÞ represents the bottom topography. For example, the one-dimensional shallow water equations are given by
@h
@t
þ @ðuhÞ

@x
¼ 0; ð71Þ

@u
@t
þ u

@u
@x
þ g

@h
@x
¼ �g

@z
@x
: ð72Þ
First, let us consider the most fundamental balance in Eqs. (71) and (72):
uðx; tÞ ¼ 0; Hðx; tÞ � hðx; tÞ þ zðxÞ ¼ HcðconstÞ; ð73Þ
where Hðx; tÞ is the water level. Numerical solutions must also remain stationary states, and the following hydrostatic bal-
ance must be satisfied on a discretized level in this case [33]:
@

@x
gh2

2

 !
þ g

@z
@x
¼ 0: ð74Þ
However, if numerical schemes using water depth h as the primitive variable do not preserve the balance between the depth
gradient and the bottom effect in Eq. (74), the real solution equation (73) is violated and spurious oscillations occur. The
same can be said of the original CSL–MOC scheme, although it guarantees the complete mass conservation in views of
q ¼

R
hdx. In order to solve this problem, the surface gradient method [34] is used for the CSL–MOC scheme. Eqs. (71)

and (72) can be changed into the following equations using the water level H instead of the water depth h:
@H
@t
þ @ðuHÞ

@x
¼ @ðuzÞ

@x
; ð75Þ

@u
@t
þ u

@u
@x
þ g

@H
@x
¼ 0: ð76Þ



Fig. 30. Potential vorticity contour at t ¼ 2p with CIP–MOC (left column) and CSL–MOC (right column) in CFL of 0.1 (upper row), 0.2 (middle row) and 0.4
(lower row).
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Then, new characteristics equations can be derived as follows:
@R�

@t
þ C�

@R�

@x
¼ g

2CH

@ðuzÞ
@x

; ð77Þ
which lead to
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Rnþ1 � R� ¼ g
2

Z Dt

0

1
CH

@ðuzÞ
@x

ds� ð78Þ
where CH �
ffiffiffiffiffiffi
gH

p
and R� � CH � u=2, and

R
ds� means time integrations along two characteristics dx�=ds� ¼ u� CH . There-

fore, CH and u at next time step can be evaluated as follows (see Fig. 3):
Cnþ1
H ¼ 1

2
CþH þ C�H þ

1
2
ðuþ � u�Þ þ g

2

Z Dt

0

1
CH

@ðuzÞ
@x

dsþ þ
Z Dt

0

1
CH

@ðuzÞ
@x

ds�
� �	 


; ð79Þ

unþ1 ¼ 1
2

uþ þ u� þ 2ðCþH � C�HÞ þ g
Z Dt

0

1
CH

@ðuzÞ
@x

dsþ �
Z Dt

0

1
CH

@ðuzÞ
@x

ds�
� �	 


: ð80Þ
Time integrations in Eqs. (79) and (80) can be approximated using dx�=ds� ¼ u� CH as follows [15]:
Z Dt

0

1
CH

@ðuzÞ
@x

ds� � � ðuzÞ� � ðuzÞn

C�Hðu� CHÞ�
: ð81Þ
In order to solve Eqs. (79) and (80), we construct the quartic polynomial of H as Eq. (10) in the CIP–CSL4 scheme. The new
defined cell volume Pðx; tÞ �

R
Hðx; tÞdx ¼

R
fhðx; tÞ þ zðxÞgdx at the center of cell between i and iþ 1 grid points can be ex-

pressed using the cell mass qi and the bottom topography zðxÞ located on the grid point
Pi ¼
Z xiþ1

xi

HiðxÞdx ¼ qi þ
Dx
2
ðzi þ ziþ1Þ: ð82Þ
Although Hðx; tÞ is not the conservative variable, Pðx; tÞ at next time step can be easily obtained using Eq. (82), that is, Dqi in
Eq. (38) is



Fig. 32. Potential vorticity contour at t ¼ 2p with various gird numbers. (upper left) 100 � 100 grid, (upper right) 200 � 200 grid, (lower left) 400 � 400
grid and (lower right) 800 � 800 grid.

Fig. 33. Height error against grid resolution.
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Fig. 34.Numerical results of water levelH(left) and momentumhu(right) att¼0:2 (equilibrium state).Fig. 35. Numerical results of water levelH(left) and momentumhu(right) att¼0:2 (small perturbation). The solid curve is a reference solution with CSLðMOC on a much �ner grid. K. Toda et al. / Journal of Computational Physics 228 (2009) 4917ð4944 4941
Dqi ¼
Dt
6

un
i hn

i þ 4unþ1=2
i hnþ1=2

i þ unþ1
i hnþ1
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� �
¼ Dt

6
un

i Hn
i þ 4unþ1=2
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i þ unþ1

i Hnþ1
i � zi un

i þ 4unþ1=2
i þ unþ1

i

� �h i
ð83Þ
and qnþ1
i can be obtained from Eq. (18). Therefore, Pnþ1

i can be obtained by Eq. (82). This extended CSL–MOC scheme (here-
after, we also call it the CSL–MOC scheme) can deal with not only the flat bottom but also the effect of the bottom topog-
raphy, keeping the complete mass conservation of the water depth h through q ¼

R
hdx.

If ðCH; P;uÞi ¼ Cc ¼
ffiffiffiffiffiffiffiffi
gHc

p� �
;HcDx;0

� �
and @xðCH; P; uÞi ¼ ð0;0;0Þ are set as stationary flow equation (73) on all points at

t ¼ 0, it can be found that all coefficients of both the CIP–CSL4 (Eqs. (12)–(14)) scheme and the CIP (Eqs. (8) and (9)) method
become zero. Therefore, CH and u at next time step are also Cc and 0, respectively, because CþH ¼ C�H ¼ Cc ¼

ffiffiffiffiffiffiffiffi
gHc

p� �
and

uþ ¼ u� ¼ 0 in Eqs. (79) and (80), and Piþ1=2 does not change because of no flux ðDqi ¼ 0Þ.
It goes to show that Eqs. (79) and (80) are also able to make geostrophically balanced initial state preserved. Not to men-

tion that the CSL–MOC scheme is consistent with the original CSL–MOC scheme in Section 3.1 in the case of flat bottom
zðxÞ ¼ 0.

In order to verify the validity of the CSL–MOC scheme, two examples are tested. The bottom topography in both cases is
given by [13]:
zðxÞ ¼
0:25ð1:0þ cosð10:0pðx� 0:5ÞÞÞ if 1:4 < x < 1:6;
0 otherwise:

�
ð84Þ
The initial conditions of the water level H and the momentum hu are given by
Hðx; t ¼ 0Þ ¼
Hc þ DH if 1:1 < x < 1:2;
Hc otherwise;

�
ð85Þ

huðx; t ¼ 0Þ ¼ 0:0; ð86Þ
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The first example is the equilibrium state ðDH ¼ 0Þ.
Fig. 34 shows the water level H and momentum hu at t ¼ 0:2. It is seen that the equilibrium state is maintained within the

computational round-off error without any numerical instabilities (this state is kept after t ¼ 0:2 as well).
The second example is the small perturbation ðDH ¼ 0:001Þ. Some similar problems [33,34] have already been examined

using the other schemes such as a fifth-order WENO scheme [13].
Fig. 35 shows the water level H and the momentum hu at t ¼ 0:2. It can be seen that the numerical solution is accurate

and almost in good agreement with other literatures. Unphysical waves and oscillations could occur around the hump after
reflection if schemes would not preserve the discrete hydrostatic balance [35]. However, the CSL–MOC scheme makes shapes
of rectangular waves traveling to the right and reflected to the left by the hump remained sharply, and no oscillation appears
around the hump.

It is proved that the one-dimensional CSL–MOC scheme can preserve the discrete hydrostatic balance and the complete
mass conservation with very small phase error and damping rate. Next, the two-dimensional version is also discussed.

We can rewrite the system equation (69) using the water level and velocities ðHð¼ hþ zÞ; u;vÞ in two dimensions:
@H
@t
þ @ðuHÞ

@x
þ @ðvHÞ

@y
¼ @ðuzÞ

@x
þ @ðvzÞ

@y
; ð87Þ

@u
@t
þ u

@u
@x
þ v @u

@y
þ g

@H
@x
¼ 0; ð88Þ

@v
@t
þ u

@v
@x
þ v @v

@y
þ g

@H
@y
¼ 0: ð89Þ
We define line densities in both x- and y-directions ðPx; PyÞ between grid points and the cell volume ðPÞ in the middle of four
grid points of the water level H as (see Fig. 16)
Pxi;j ¼
Z xiþ1

xi

Hi;jðx; yÞdx ¼ rxi;j þ
Dx
2
ðzi;j þ ziþ1;jÞ; ð90Þ

Pyi;j ¼
Z yjþ1

yj

Hi;jðx; yÞdy ¼ ryi;j þ
Dy
2
ðzi;j þ zi;jþ1Þ; ð91Þ

Pi;j ¼
Z xiþ1

xi

Z yjþ1

yj

Hi;jðx; yÞdxdy ¼ qi;j þ
DxDy

4
ðzi;j þ ziþ1;j þ zi;jþ1 þ ziþ1;jþ1Þ; ð92Þ
and ðPx; Py; PÞ are used in the two-dimensional CSL4 interpolation instead of ðrx;ry;qÞ.
The same directional splitting technique as Section 4 can be employed for time evolutions of all variables. In the x-direc-

tional operation, for example, ðH;uÞ and averages (�Hð¼ Py=DyÞ, see Eqs. (59)–(61), �u) can be updated by Eqs. (79) and (80),
ðv; �vÞ by Eq. (58) with f ¼ 0, and ðPx; PÞ by Eqs. (18) and (83), respectively. The same procedure can be used in the y-direction,
and time evolution in one time step is completed.

In order to verify the validity of the two-dimensional CSL–MOC scheme, a small perturbation of a two-dimensional stea-
dy-state lake problem given by LeVeque [33] is solved. The example has been used well to verify validities of numerical
schemes [13,14,36].

The bottom topography is given by
zðx; yÞ ¼ 0:8 expð�5:0ðx� 0:9Þ2 � 50:0ðy� 0:5Þ2Þ: ð93Þ
The initial conditions of the water level and the momentum in the x- and y-directions ðH;hu;hvÞ are
Hðx; y; t ¼ 0Þ ¼
Hc þ DH if 0:05 < x < 0:15;
Hc otherwise;

�
ð94Þ

huðx; y; t ¼ 0Þ ¼ hvðx; y; t ¼ 0Þ ¼ 0:0; ð95Þ
where DH ¼ 0:01 is the initial perturbation and Hc ¼ 1:0 is chosen. The computational domain is ½0;2� � ½0;1�, and two dif-
ferent uniform meshes with 200� 100 and 600� 300 are used. The gravitational acceleration is set to gð¼ 1=Fr2Þ ¼ 9:81. The
CFL number is 0.32.

Shown in Fig. 36 are 30 uniformly spaced contour lines of the water level H at times t ¼ 0:12, 0.24, 0.36, 0.48 and 0.60
with 200� 100 meshes on the left side and 600� 300 meshes on the right side.

As the initial perturbation propagates right and past the hump, the symmetric distortion by reflections and interactions
on the surface wave appears due to the slow wave speed above the hump. It is observed that the CSL–MOC scheme is able to
exactly simulate and reproduce complicated and symmetric structures as the other literatures.
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